A Grey Theory Based Approach to Big Data Risk Management Using FMEA

Author:

Mendonça Silva Maisa1ORCID,Poleto Thiago2ORCID,Camara e Silva Lúcio1,Henriques de Gusmao Ana Paula2ORCID,Cabral Seixas Costa Ana Paula2

Affiliation:

1. Technology Centre, Department of Management Engineering, Universidade Federal de Pernambuco, Rodovia BR 104, Km 62, Nova Caruaru, 55002-960 Caruaru, PE, Brazil

2. School of Engineering, Centre for Technology and Geosciences, Department of Management Engineering, Universidade Federal de Pernambuco, Caixa Postal 5125, 52.070-970 Recife, PE, Brazil

Abstract

Big data is the term used to denote enormous sets of data that differ from other classic databases in four main ways: (huge) volume, (high) velocity, (much greater) variety, and (big) value. In general, data are stored in a distributed fashion and on computing nodes as a result of which big data may be more susceptible to attacks by hackers. This paper presents a risk model for big data, which comprises Failure Mode and Effects Analysis (FMEA) and Grey Theory, more precisely grey relational analysis. This approach has several advantages: it provides a structured approach in order to incorporate the impact of big data risk factors; it facilitates the assessment of risk by breaking down the overall risk to big data; and finally its efficient evaluation criteria can help enterprises reduce the risks associated with big data. In order to illustrate the applicability of our proposal in practice, a numerical example, with realistic data based on expert knowledge, was developed. The numerical example analyzes four dimensions, that is, managing identification and access, registering the device and application, managing the infrastructure, and data governance, and 20 failure modes concerning the vulnerabilities of big data. The results show that the most important aspect of risk to big data relates to data governance.

Funder

Universidade Federal de Pernambuco

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3