Theorems on Positive Data: On the Uniqueness of NMF

Author:

Laurberg Hans1,Christensen Mads Græsbøll1,Plumbley Mark D.2,Hansen Lars Kai3,Jensen Søren Holdt1

Affiliation:

1. Department of Electronic Systems, Aalborg University, Niels Jernes Vej 12, 9220 Aalborg, Denmark

2. Department of Electronic Engineering, Queen Mary, University of London, Mile End Road, London E1 4NS, UK

3. Department of Informatics and Mathematical Modeling, Technical University of Denmark, Richard Petersens Plads, Building 321, 2800 Lyngby, Denmark

Abstract

We investigate the conditions for which nonnegative matrix factorization (NMF) is unique and introduce several theorems which can determine whether the decomposition is in fact unique or not. The theorems are illustrated by several examples showing the use of the theorems and their limitations. We have shown that corruption of a unique NMF matrix by additive noise leads to a noisy estimation of the noise-free unique solution. Finally, we use a stochastic view of NMF to analyze which characterization of the underlying model will result in an NMF with small estimation errors.

Funder

Danish Technical Research Council

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 104 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generating Hidden Markov Models from Process Models Through Nonnegative Tensor Factorization;ACM Transactions on Modeling and Computer Simulation;2024-07-12

2. Quasi-orthogonalization for alternating non-negative tensor factorization;ETNA - Electronic Transactions on Numerical Analysis;2024

3. Neural nonnegative matrix factorization for hierarchical multilayer topic modeling;Sampling Theory, Signal Processing, and Data Analysis;2023-12-19

4. Semi-disentangled non-negative matrix factorization for rating prediction;Applied Soft Computing;2023-12

5. Symmetric nonnegative matrix factorization: A systematic review;Neurocomputing;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3