Affiliation:
1. Computer Engineering Department, College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia
Abstract
This paper deals with the problem of the classification of large-scale very high-resolution (VHR) remote sensing (RS) images in a semisupervised scenario, where we have a limited training set (less than ten training samples per class). Typical pixel-based classification methods are unfeasible for large-scale VHR images. Thus, as a practical and efficient solution, we propose to subdivide the large image into a grid of tiles and then classify the tiles instead of classifying pixels. Our proposed method uses the power of a pretrained convolutional neural network (CNN) to first extract descriptive features from each tile. Next, a neural network classifier (composed of 2 fully connected layers) is trained in a semisupervised fashion and used to classify all remaining tiles in the image. This basically presents a coarse classification of the image, which is sufficient for many RS application. The second contribution deals with the employment of the semisupervised learning to improve the classification accuracy. We present a novel semisupervised approach which exploits both the spectral and spatial relationships embedded in the remaining unlabelled tiles. In particular, we embed a spectral graph Laplacian in the hidden layer of the neural network. In addition, we apply regularization of the output labels using a spatial graph Laplacian and the random Walker algorithm. Experimental results obtained by testing the method on two large-scale images acquired by the IKONOS2 sensor reveal promising capabilities of this method in terms of classification accuracy even with less than ten training samples per class.
Subject
Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献