An Efficient Laguerre-Based FDTD Iterative Algorithm in 3D Cylindrical Coordinate System

Author:

Zhu Da-Wei12ORCID,Chen Hai-Lin2ORCID,Pan Zi-Yu1ORCID,Xu Bo-Ao3ORCID,Chen Bin2ORCID

Affiliation:

1. School of Information and Communication Engineering, Nanjing Institute of Technology, Nanjing, China

2. National Key Laboratory on Electromagnetic Environmental Effects and Electro-Optical Engineering, Army Engineering University of PLA, Nanjing, China

3. Rocket Force Academy, Beijing, China

Abstract

Here an efficient Laguerre-based finite-difference time-domain iterative algorithm is proposed. Different from the previously developed iterative procedure used in the efficient FDTD algorithm, a new perturbation term combined with the Gauss–Seidel iterative procedure is introduced to form the new Laguerre-based FDTD algorithm in the 3D cylindrical coordinate system. Such a treatment scheme can reduce the splitting error to a low level and obtain a good convergence; in other words, it can improve the efficiency and accuracy than other algorithms. To verify the performance of the proposed algorithm, two scattering numerical examples are given. The computation results show that the proposed algorithm can be better than the ADI-FDTD algorithm in terms of efficiency and accuracy. Meanwhile, the proposed algorithm is extremely useful for the problems with fine structures in the 3D cylindrical coordinate system.

Funder

National Science Research Foundation of Institutions of Higher Learning in Jiangsu Province of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3