Study on Effect of Number of Transparent Covers and Refractive Index on Performance of Solar Water Heater

Author:

Kalidasan B.1,Srinivas T.2

Affiliation:

1. Energy & Environmental Engineering, School of Mechanical and Building Science, VIT University, Vellore 632014, India

2. CO2 Research & Green Technologies Centre, School of Mechanical and Building Science, VIT University, Vellore 63201, India

Abstract

Liquid flat plate collector (solar flat plate collector) is one of the important applications in solar thermal system. The development in solar photovoltaic is an emerging challenge for the solar thermal system. In the current work an attempt has been made to optimize the number of transparent covers and refractive index to improve the optical efficiency and thermal efficiency for the collector. Performance of the liquid flat plate collector at VIT University Vellore has been simulated numerically for January 21st at an interval of half an hour with different numbers of transparent covers (0–3) and different refractive index values ranging from 1.1 to 1.7. The formulation and solutions are developed with simple software Microsoft Office Excel to result the performance characteristics. The result shows that the efficiency of the flat plate collector increases with an increase in number of covers and decreases after an optimum number of covers. It also decreases with an increase in refractive index. The combination of optimum number (two) and lower refractive index (1.1) results improved useful heat.

Publisher

Hindawi Limited

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Linear cavity solar receivers: A review;Applied Thermal Engineering;2023-02

2. Effect of number of glass covers on performance of flat- and corrugated-plate solar air heaters;2022 13th International Renewable Energy Congress (IREC);2022-12-13

3. Performance of a heat pipe solar collector with evacuated polycarbonate front cover;Journal of Applied Engineering Science;2022

4. Experimental Investigation to Determine the Performance of Solar Thermal Collector with Single and Double Glazing;Artificial Intelligence and Renewables Towards an Energy Transition;2020-12-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3