An Approach to Pipe Image Interpretation Based Condition Assessment for Automatic Pipe Inspection

Author:

Mashford John1,Marlow David1,Burn Stewart1

Affiliation:

1. Division of Land and Water, Commonwealth Scientific and Industrial Research Organisation, P.O. Box 56, Highett, VIC 3190, Australia

Abstract

Condition assessment forms an important part of the asset management of buried pipelines. This is carried out through the use of inspection systems which usually consist of an image acquisition device attached to a mobile robotic platform. Complete or partial automation of image interpretation could increase the efficiency and objectivity of pipe inspection. A key component of an automatic pipe inspection system is the segmentation module. This paper describes an approach to automatic pipe inspection using pixel-based segmentation of colour images by support vector machine (SVM) coupled with morphological analysis of the principal component of the segmented image. The morphological analysis allows the principal component of the segmented image to be decomposed into the pipe flow lines region, the pipe joints, and adjoining defects. A simple approach to detecting pipe connections using fuzzy membership functions relating to defect size and location is also described.

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3