Impact of Dead Fish Degradation on the Monitoring of Fish Losses in the Pregrowing and Growing Phase of Caged European Sea Bass (Dicentrarchus labrax)

Author:

Chadli HousniORCID,Ennayer IkramORCID,Bahida AbdeljallilORCID,Nhhala HassanORCID,Er-Raioui HassanORCID

Abstract

The interplay between environmental, biological, and physical factors often leads to the deterioration of dead fish in marine cages prior to their removal. Depending on the weight of the dead fish and the frequency of their removal, deterioration can progress to a stage where visual identification by divers becomes challenging, thereby disrupting accurate counting of dead fish. This study presents a practical precision tool for monitoring the number of dead fish during the pregrowth and growth phases of caged European sea bass (Dicentrarchus labrax). To improve the assessment of collected mortality, experiments were conducted in farming cages with various fish weights. Identifiable fish rates (I, %) were calculated every 24 hr and classified into four weight classes: WC1 (4–15 g), WC2 (15–30 g), WC3 (30–80 g), and WC4 (>80 g). The corrected number of dead fish (M) was calculated by dividing the collected number (C) by a correction factor (McR), which was determined based on the adopted removal frequency. The possible mortality removal frequencies per week (Fn) included operations such as F7 (daily), F3 (3 times), F2 (2 times), and F1 (once). The smallest correction denominator was 22% for WC1 at a frequency of once per week, whereas the maximum was 100% for WC3 and WC4 daily. The results revealed a high negative significant correlation between Fn and uncollected degraded fish rate (UR) (r = –0.841, p < 0.05). Applying corrections to mortality collected in three finished batches (B2, B3, and B7) led to an increase in the mortality rate by 3.9% ± 1.5%, 5.5% ± 0.7%, and 5.0% ± 0.5%, respectively. This explained 16.8% ± 4.7%, 65.5% ± 26.7%, and 30.3% ± 3.7% of fish disappearances in B2, B3, and B7, respectively. The significance of this study lies in its practical applicability to fish farms as a precise tool for monitoring fish raised in marine cages.

Publisher

Wiley

Reference62 articles.

1. Compassion in World Farming (CIWF) European seabass in numbers. Food business 2021 https://www.agrociwf.fr/ressources/poissons/.

2. Evaluation de l'effet de l'environnement et de l'alimentation sur l'apparition d'anomalies de développement chez l'alevin de bar (Dicentrarchus labrax)

3. KaushikS.andDe KinkelinP. L’alimentation et les maladies d’origine alimentaire 2018.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3