SEMA6D, Negatively Regulated by miR-7, Contributes to C28/I2 chondrocyte’s Catabolic and Anabolic Activities via p38 Signaling Pathway

Author:

Yang Haoyu1,Yang Zhicheng2,Yu Zhentang2,Xiong Chenwei2,Zhang Yi2,Zhang Junjie2,Huang Yong2,Zhou Xindie2ORCID,Li Jin3ORCID,Xu Nanwei2

Affiliation:

1. Department of Orthopedics, Wuxi 9th People’s Hospital Affiliated to Soochow University, Wuxi 214000, China

2. Department of Orthopedics, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou 213000, China

3. Department of Orthopedic Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, China

Abstract

MiR-7 has been recognized as an osteoarthritis (OA-)-promoting factor, but the specific downstream pathway of miR-7 still remains unknown. Further investigation of the molecular regulatory mechanism of miR-7 might help develop a novel therapeutic method for OA. In this study, we revealed that Semaphorin 6D (SEMA6D) was a direct target gene of miR-7 and presented a negative regulatory relation with SEMA6D in vitro and in vivo. SEMA6D could improve OA in rat OA models, as indicated by H&E and Safranin O-Fast green staining, and also μCT analysis. Further evaluation of SEMA6D suggested that SEMA6D promotes the anabolism and reduces the catabolism of C28/I2 chondrocytes via inhibiting the activation of the p38 pathway. The present research illustrated that SEMA6D is a negatively regulatory factor of miR-7 and a pivotal mediator of catabolism and anabolism in C28/I2 chondrocytes. SEMA6D exerts its function via inhibiting the activation of the p38 pathway.

Funder

Jiaxing Science and Technology Project

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3