Affiliation:
1. Water Technology Institute, Arba Minch University, Arba Minch, Ethiopia
Abstract
Climate analysis at relevant time scales is important for water resources management, agricultural planning, flood risk assessment, ecological modeling, and climate change adaptation. This study analyzes the spatiotemporal variability of climate on rainfall distribution for the Hare catchment of Ethiopia. Numerous hydroclimatic variables and scenarios were developed to assess the pattern of rainfall during different seasons. The average annual precipitation varies between −37.3%, +33.1%, and −38.2%, +61.2%, for RCP 4.5 and RCP 8.5, respectively. The anticipated declines in mean seasonal rainfall changes for the Bega and Belg seasons range from −69.6% to 88.4% and from −60.6% to 15.2% for RCP 4.5 and RCP 8.5, respectively. Climate models predict that the average periodic precipitation considered for the Kiremt season will vary from −12.1% to 1.33%. The Belg, Kiremt, and Bega seasons will likely see a 28.2%, 12.2%, and 22.6% drop in mean seasonal precipitation, respectively. The decrease in stream flow accompanied by the aforementioned climate scenarios (RCP 4.5 and RCP 8.5) can be as high as 19.6% and 6.7%, respectively. Also, the amount of discharge will reduce in the near future because of a substantial reduction in rainfall and a rise in evapotranspiration in the catchment. This decline in stream flow has its own effect on the future availability of water resources. The research finding is vital to environmental protection authority, decision makers, and scientific community to undertake climate change adaption techniques for rain scare areas. A program combined with multi-RCMs to evaluate climate change effects on hydrometeorology generated a novel approach to this research with appropriate adaptation mechanisms.
Subject
Atmospheric Science,Pollution,Geophysics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献