A New Artificial Intelligence-Based Model for Amyotrophic Lateral Sclerosis Prediction

Author:

Alzahrani A. Khuzaim1ORCID,Alsheikhy Ahmed A.2ORCID,Shawly Tawfeeq3ORCID,Barr Mohammad2ORCID,Ahmed Hossam E.24ORCID

Affiliation:

1. Department of Medical Laboratory Technology, Faculty of Medical Applied Science, Northern Border University, Arar 91431, Saudi Arabia

2. Department of Electrical Engineering, College of Engineering, Northern Border University, Arar 91431, Saudi Arabia

3. Department of Electrical Engineering, Faculty of Engineering at Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia

4. Electrical Engineering Department, Faculty of Engineering, Benha University, Benha, Egypt

Abstract

Currently, amyotrophic lateral sclerosis (ALS) disease is considered fatal since it affects the central nervous system with no cure or clear treatments. This disease affects the spinal cord, more specifically, the lower motor neurons (LMNs) and the upper motor neurons (UMNs) inside the brain along with their networks. Various solutions have been developed to predict ALS. Some of these solutions were implemented using different deep-learning methods (DLMs). Nevertheless, this disease is considered a tough task and a huge challenge. This article proposes a reliable model to predict ALS disease based on a deep-learning tool (DLT). The developed DLT is designed using a UNET architecture. The proposed approach is evaluated for different performance quantities on a dataset and provides promising results. An average obtained accuracy ranged between 82% and 87% with around 86% of the F-score. The obtained outcomes can open the door to applying DLMs to predict and identify ALS disease.

Funder

King Salman Center for Disability Research

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3