Resveratrol Suppresses Bupivacaine-Induced Spinal Neurotoxicity in Rats by Inhibiting Endoplasmic Reticulum Stress via SIRT1 Modulation

Author:

Luo Yunpeng1ORCID,Zhao Yang1ORCID,Lai Jian1ORCID,Wei Liling1ORCID,Zhou Gang1ORCID,Yu Yue2ORCID,Liu Jingchen1ORCID

Affiliation:

1. Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021 Guangxi, China

2. Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, 166 Daxuedong Road, Nanning, 530007 Guangxi, China

Abstract

Bupivacaine (BUP) may cause neurotoxic effects after spinal anesthesia. Resveratrol (RSV), a natural agonist of Silent information regulator 1 (SIRT1), protects various tissues and organs from damage by regulating endoplasmic reticulum (ER) stress. The aim of this study is to explore whether RSV could alleviate the neurotoxicity induced by bupivacaine via regulating ER stress. We established a model of bupivacaine-induced spinal neurotoxicity in rats using intrathecal injection of 5% bupivacaine. The protective effect of RSV was evaluated by injecting intrathecally with 30 μg/μL RSV in total of 10 μL per day for 4 consecutive days. On day 3 after bupivacaine administration, tail-flick latency (TFL) tests and the Basso, Beattie, and Bresnahan (BBB) locomotor scores were assessed to neurological function, and the lumbar enlargement of the spinal cord was obtained. H&E and Nissl staining were used to evaluate the histomorphological changes and the number of survival neurons. TUNEL staining was conducted to determine apoptotic cells. The expression of proteins was detected by IHC, immunofluorescence, and western blot. The mRNA level of SIRT1 was determined by RT-PCR. Bupivacaine caused spinal cord neurotoxicity by inducing cell apoptosis and triggering ER stress. RSV treatment promoted the recovery of neurological dysfunction after bupivacaine administration by suppressing neuronal apoptosis and ER stress. Furthermore, RSV upregulated SIRT1 expression and inhibited PERK signaling pathway activation. In summary, resveratrol suppresses bupivacaine-induced spinal neurotoxicity in rats by inhibiting endoplasmic reticulum stress via SIRT1 modulation.

Funder

Innovation Project of Guangxi Graduate Education

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3