Further Results on Exponentially Robust Stability of Uncertain Connection Weights of Neutral-Type Recurrent Neural Networks

Author:

Si Wenxiao1ORCID,Xie Tao1ORCID,Li Biwen1ORCID

Affiliation:

1. Hubei Normal University, Huangshi 435002, Hubei, China

Abstract

Further results on the robustness of the global exponential stability of recurrent neural network with piecewise constant arguments and neutral terms (NPRNN) subject to uncertain connection weights are presented in this paper. Estimating the upper bounds of the two categories of interference factors and establishing a measuring mechanism for uncertain dual connection weights are the core tasks and challenges. Hence, on the one hand, the new sufficient criteria for the upper bounds of neutral terms and piecewise arguments to guarantee the global exponential stability of NPRNN are provided. On the other hand, the allowed enclosed region of dual connection weights is characterized by a four-variable transcendental equation based on the preceding stable NPRNN. In this way, two interference factors and dual uncertain connection weights are mutually restricted in the model of parameter-uncertainty NPRNN, which leads to a dynamic evolution relationship. Finally, the numerical simulation comparisons with stable and unstable cases are provided to verify the effectiveness of the deduced results.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3