Affiliation:
1. School of Software, Nanchang Hangkong University, 330063 Nanchang, China
Abstract
In future heterogeneous cellular networks with small cells, such as D2D and relay, interference coordination between macro cells and small cells should be addressed through effective resource allocation and power control. The two-step Stackelberg game is a widely used and feasible model for resource allocation and power control problem formulation. Both in the follower games for small cells and in the leader games for the macro cell, the cost parameters are a critical variable for the performance of Stackelberg game. Previous studies have failed to adequately address the optimization of cost parameters. This paper presents a reinforcement learning approach for effectively training cost parameters for better system performance. Furthermore, a two-stage pretraining plus
-greedy algorithm is proposed to accelerate the convergence of reinforcement learning. The simulation results can demonstrate that compared with the three beachmarking algorithms, the proposed algorithm can enhance average throughput of all users and cellular users by up to 7% and 9.7%, respectively.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献