Affiliation:
1. Department of Mathematics, Northeast Forestry University, Harbin 150040, China
2. Department of Mathematics, Harbin Institute of Technology, Harbin 150001, China
Abstract
The distribution of purely imaginary eigenvalues and stabilities of generally singular or neutral differential dynamical systems with multidelays are discussed. Choosing delays as parameters, firstly with commensurate case, we find new algebraic criteria to determine the distribution of purely imaginary eigenvalues by using matrix pencil, linear operator, matrix polynomial eigenvalues problem, and the Kronecker product. Additionally, we get practical checkable conditions to verdict the asymptotic stability and Hopf bifurcation of differential dynamical systems. At last, with more general case, the incommensurate, we mainly study critical delays when the system appears purely imaginary eigenvalue.
Funder
National Natural Science Foundation of China