Dynamical Modeling, Analysis, and Control of Information Diffusion over Social Networks: A Deep Learning-Based Recommendation Algorithm in Social Network

Author:

Cheng Kefei1,Guo Xiaoyong2ORCID,Cui Xiaotong1,Shan Fengchi2ORCID

Affiliation:

1. School of Cyber Security and Information Law, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

2. School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

Abstract

The recommendation algorithm can break the restriction of the topological structure of social networks, enhance the communication power of information (positive or negative) on social networks, and guide the information transmission way of the news in social networks to a certain extent. In order to solve the problem of data sparsity in news recommendation for social networks, this paper proposes a deep learning-based recommendation algorithm in social network (DLRASN). First, the algorithm is used to process behavioral data in a serializable way when users in the same social network browse information. Then, global variables are introduced to optimize the encoding way of the central sequence of Skip-gram, in which way online users’ browsing behavior habits can be learned. Finally, the information that the target users’ have interests in can be calculated by the similarity formula and the information is recommended in social networks. Experimental results show that the proposed algorithm can improve the recommendation accuracy.

Publisher

Hindawi Limited

Subject

Modeling and Simulation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Predicting Learning Interactions in Social Learning Networks: A Deep Learning Enabled Approach;IEEE/ACM Transactions on Networking;2023-10

2. A Realistic Criterion for Team Formation in Social Network;Iranian Journal of Science and Technology, Transactions of Electrical Engineering;2022-10-21

3. Research on Online Learner Modeling and Course Recommendation Based on Emotional Factors;Scientific Programming;2022-02-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3