Affiliation:
1. School of Design Arts and Media, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
2. School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
Abstract
Hand gesture recognition based on surface electromyography (sEMG) plays an important role in the field of biomedical and rehabilitation engineering. Recently, there is a remarkable progress in gesture recognition using high-density surface electromyography (HD-sEMG) recorded by sensor arrays. On the other hand, robust gesture recognition using multichannel sEMG recorded by sparsely placed sensors remains a major challenge. In the context of multiview deep learning, this paper presents a hierarchical view pooling network (HVPN) framework, which improves multichannel sEMG-based gesture recognition by learning not only view-specific deep features but also view-shared deep features from hierarchically pooled multiview feature spaces. Extensive intrasubject and intersubject evaluations were conducted on the large-scale noninvasive adaptive prosthetics (NinaPro) database to comprehensively evaluate our proposed HVPN framework. Results showed that when using 200 ms sliding windows to segment data, the proposed HVPN framework could achieve the intrasubject gesture recognition accuracy of 88.4%, 85.8%, 68.2%, 72.9%, and 90.3% and the intersubject gesture recognition accuracy of 84.9%, 82.0%, 65.6%, 70.2%, and 88.9% on the first five subdatabases of NinaPro, respectively, which outperformed the state-of-the-art methods.
Funder
National Natural Science Foundation of China
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献