Conversion Timing of Following-Up Thermal Recovery Approaches of Post-CHOP for Foamy Extraheavy Oil Reservoirs

Author:

Yang Zhaopeng1ORCID,Li Xingmin1,Yu Yang1ORCID,Xie Jia2,Dong Yintao3

Affiliation:

1. PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China

2. PetroChina Liaohe Oilfield Company, Panjin, 124010 Liaoning, China

3. CNOOC Research Institute, Beijing 100028, China

Abstract

The purpose of this study is to determine the optimal conversion timing of follow-up thermal recovery approaches of post-CHOP for foamy extraheavy oil reservoirs. The microscopic visualization experiment and the one-dimensional sand pack experiment are conducted to investigate the influence of temperature on the foamy oil cold production process. According to the experimental results, it can be concluded that the temperature has great influence on foamy oil flow stage during the CHOP process. Therefore, it is necessary to study the optimal conversion timing of follow-up thermal recovery approaches after CHOP for the foamy extraheavy oil reservoir. Based on the analysis of the experimental results, the compositional foamy oil model is established by taking the effect of temperature into consideration. In the numerical model, the conversion timings of different thermal recovery approaches are investigated. The optimal conversion timings for cyclic steam stimulation (CSS) and steam flooding (SF) processes are the moments when the pressure drops to the pseudo-bubble point pressure. For the CSS method, excessive pressure cannot give full play to the production potential of CHOP stage; when the pressure is too low, it lacks enough energy to drive the heated crude oil to the wellbore. For the SF method, high pressure cannot fully release the latent heat of steam, and the content of dissolved gas (which will hinder the heat transfer) in oil phase is higher under high pressure, while the very low pressure leads to relatively high viscosity of crude oil; thus, the performance of the SF process becomes worse. For the SAGD process, the adverse effects of released solution gas in foamy extraheavy oil reservoir outweigh the positive effects. As a result, the CHOP period should be extended as long as possible to obtain a high recovery. In other words, the recovery process should be switched to the SAGD process at a relatively low formation pressure. The findings of this study could help for better understanding of the CHOP and post-CHOP thermal techniques for foamy extraheavy oil reservoirs, and it can provide guidance for reservoir engineers to make better use of the thermal recovery techniques to further improve the recovery performance of foamy extraheavy oil reservoirs.

Funder

scientific research and technological development project of CNPC

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3