Status and Challenges on Design and Implementation of Camber Morphing Mechanisms

Author:

Majid Tuba1ORCID,Jo Bruce W.12ORCID

Affiliation:

1. Department of Mechanical Engineering, State University of New York (SUNY) Korea, Stony Brook University, Incheon 21985, Republic of Korea

2. Department of Mechanical Engineering, Stony Brook University, Stony Brook 11794, USA

Abstract

This paper presents state-of-the-art technologies of camber morphing mechanisms from the perspectives of design and implementation. Wing morphing technologies are aimed at making the aircraft more energy or aerodynamically efficient during flight by actively adjusting the wing shape, but their mechanism designs and implementation aspects are often overlooked from practical sense in many technical articles. Thus, it is of our interest that we thoroughly investigate morphing mechanisms and their nature of design principles and methodologies from the implementation and test flight aspects, navigate the trends, and evaluate progress for researchers’ methodology selection that possibly turns to design and build stages. This paper categorizes the camber morphing mechanisms from a wide collection of literature on morphing wings and their mechanisms, and the defined classifications are based on mechanism’s design features and synthesis methodology, i.e., by the tools and methods used to solve the design problem. The categories are (1) structure-based, (2) material-based, and (3) hybrid. Most of the structure-based camber morphing mechanisms have distinctive structural features; however, the material-based camber morphing mechanisms make use of material properties and tools to enhance the elastic nature of its structures. Lastly, the hybrid morphing mechanisms are a combination of both the aforementioned categories. In summary, this review provides researchers in the field of morphing mechanisms and wings with choices of materials, actuators, internal and external structure design for wings, and overarching process and design methodologies for implementation with futuristic and practical aspects of flight performance and applications. Moreover, through this critical review of morphing mechanism, selective design criteria for appropriate morphing mechanisms are discussed.

Funder

InnoScience Corporation Inc.

Publisher

Hindawi Limited

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3