A Multifunctionality Reconfigurable HMSIW Filter by Using EBG Structure and Diodes for C/X-Band Application

Author:

Pedram Kioumars1ORCID,Sim Sanghoon1ORCID

Affiliation:

1. School of Electronics Engineering, Chungbuk National University, Cheongju, Republic of Korea

Abstract

This letter presents a multifunctionality reconfigurable substrate-integrated waveguide (SIW) filter embedded in a microstrip line. The proposed filter used an electromagnetic bandgap structure (EBG) to compact the size and improve the electromagnetic features. The SIW filter consists of a three-cell EBG with metallic circular-shaped connected to the ground through cylindrical vias. Firstly, the base SIW structure offers a wide passband filtering response, and then, to obtain selective passband, wide band rejection, and controllable resonance frequencies, a three-cell EBG along with four diodes has been attached. The filter is designed and printed on a Rogers 4003 substrate with a thickness of 1 mm and is experimentally validated for functionalities operated at three modes with an average 3 dB bandwidth of 115 MHz in each frequency. In addition to that, two transmission zeros (TZ) have been produced in the upper band frequency. The filter’s response is also tunable by turning the diode off or on and changing the main parameters of EBG, the gab, and the position between cells. The study explores resonance frequency alterations in a three-state system of on/off. By eliminating or diminishing specific modes, and incorporating diodes, distinct resonance behaviors are observed. Moreover, shifting frequency resonance in a multiparameter system has been investigated. Increasing B1 induces a significant shift to lower values, while an increase in D1 leads to a decrease in the first and second resonance frequencies and an upward shift in the third. The designed filter has been fabricated and tested to compare and confirm simulated responses. Simulation and measurement results are in good agreement. The S-parameters of measured results gained a good response (>15 dB) within the passbands and stopbands and an insertion loss of 1.5 dB suitable for 5G and Wi-Fi systems.

Funder

Chungbuk National University

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3