A Fast‐Forward Dilute‐and‐Shoot Multielement Method for Analysis of 33 Elements in Human Whole Blood, Serum, and Urine by Inductively Coupled Plasma Mass Spectrometry: A Streamlined Approach for Clinical Diagnostic and Biomonitoring

Author:

Huber SandraORCID,Michel Jörg,Reijnen Maurice,Averina MariaORCID,Bolann BjørnORCID,Odland Jon ØyvindORCID,Hansen SolrunnORCID,Brox JanORCID

Abstract

The analysis of toxic and essential elements in human matrices is used in clinical diagnostics and for biomonitoring of different populations to study related health outcomes. This work aimed to develop fast and reliable methods for the analysis of a broad range of elements in liquid human matrices, such as whole blood, serum, and urine, with a similar setup for the three matrices and different analysis needs. An easy and fast‐forward dilute‐and‐shoot method for 33 elements (i.e., Ag, Al, As, B, Ba, Be, Bi, Cd, Ce, Co, Cr, Cu, Hg, I, Li, Mn, Mo, Ni, Pb, Pd, Pt, Sb, Se, Sn, Sr, Te, Th, Tl, U, V, W, Zn, and Zr) was developed. 200 µL of either sample material was diluted with an alkaline reagent to a volume of 4 mL in total. Sample dilution and preparation of matrix‐matched calibration standards were performed in 48‐well plates by an automated liquid handler. Diluted samples were analyzed by inductively coupled plasma mass spectrometry on a Perkin Elmer NexIon 300D ICP‐MS instrument equipped with an ESI‐FAST SC2DX autosampler in kinetic energy discrimination mode with helium as cell gas at either 4.8 mL or 5.7 mL and 1600 W RF generator power. The method validation results showed good accuracy for fresh human samples from an external quality assessment scheme with measured concentrations within the assigned concentration ranges. Good precision and reproducibility for most elements were demonstrated with variation coefficients below or far below 8% and 15% for whole blood, 8% and 10% for serum, and 10% and 10% for urine, respectively. The developed reagent and instrumental setup were applicable to all three matrices. This minimizes the risk of human errors when switching between analyses of the different sample matrices and allows a rapid and easy analysis of whole blood, serum, and urine within one day if needed. The method demonstrated robustness over time, withstanding minor changes in the preparation of working solutions and samples, instrumental analysis, and setup. Analysis of human real samples showed the method’s applicability for 33 toxic and essential elements in whole blood, serum, and urine and at concentrations relevant to clinical diagnostics as well as biomonitoring.

Funder

Helse Nord RHF

Universitetssykehuset Nord-Norge

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3