Affiliation:
1. Department of Surgery, The First Hospital of Qinhuangdao, Qinhuangdao City, Hebei Province, China
Abstract
Objective. Tumor microenvironment as an important element of malignancy could help predict cancer prognosis and therapeutic response; thus, a prognostic landscape map of the tumor microenvironment in luminal B breast cancers should be developed. Methods. The GEO and TCGA databases were employed to retrieve clinical follow-up data and expression profiles of luminal B breast cancer. CIBERSORT was applied to assess the infiltration of the tumor microenvironment of 209 patients and to construct tumor microenvironment-based subtypes of luminal B breast cancer. We also conducted Cox multivariate regression analysis to select features that could be used to develop a microenvironment signature for cancer. Samples were categorized as having low and high TME scores according to the median TME score. The correlations of prognosis and TME score, expression levels of immune factors and genomic variation, and clinical features were further investigated. Results. We found that high TME scores were correlated with poor prognosis. The current findings showed that the expressions of multiple immune-related genes, including CXCL9, CXCL10, GZMB, and PDCD1LG2, were upregulated in cancer with high TME scores. The high-risk group showed lower TP53 gene mutation frequency as opposed to that of the low-risk group. For the purpose of developing a TME scoring system, the TME infiltration levels of 209 patients with luminal B breast cancer from TCGA were comprehensively analyzed. Conclusions. Our analysis revealed that the TME score was an indicator of patients’ response to immune checkpoint modulators and an effective prognostic biomarker. TME scoring improves current immunotherapy on luminal B breast cancer.
Subject
Biochemistry (medical),Clinical Biochemistry,Genetics,Molecular Biology,General Medicine
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献