Identification of Coupled Map Lattice Based on Compressed Sensing

Author:

Xie Dong12,Li Lixiang12ORCID,Niu Xinxin12,Yang Yixian12

Affiliation:

1. Information Security Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China

2. National Engineering Laboratory for Disaster Backup and Recovery, Beijing University of Posts and Telecommunications, Beijing 100876, China

Abstract

A novel approach for the parameter identification of coupled map lattice (CML) based on compressed sensing is presented in this paper. We establish a meaningful connection between these two seemingly unrelated study topics and identify the weighted parameters using the relevant recovery algorithms in compressed sensing. Specifically, we first transform the parameter identification problem of CML into the sparse recovery problem of underdetermined linear system. In fact, compressed sensing provides a feasible method to solve underdetermined linear system if the sensing matrix satisfies some suitable conditions, such as restricted isometry property (RIP) and mutual coherence. Then we give a low bound on the mutual coherence of the coefficient matrix generated by the observed values of CML and also prove that it satisfies the RIP from a theoretical point of view. If the weighted vector of each element is sparse in the CML system, our proposed approach can recover all the weighted parameters using only aboutMsamplings, which is far less than the number of the lattice elementsN. Another important and significant advantage is that if the observed data are contaminated with some types of noises, our approach is still effective. In the simulations, we mainly show the effects of coupling parameter and noise on the recovery rate.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3