Affiliation:
1. Information Engineering Department, Hubei University for Nationalities, Enshi 445000, China
2. Digital Media College, Sichuan Normal University, Chengdu 610068, China
Abstract
Image denoising methods are often based on the minimization of an appropriately defined energy function. Many gradient dependent energy functions, such as Potts model and total variation denoising, regard image as piecewise constant function. In these methods, some important information such as edge sharpness and location is well preserved, but some detailed image feature like texture is often compromised in the process of denoising. For this reason, an image denoising method based on local adaptive regularization is proposed in this paper, which can adaptively adjust denoising degree of noisy image by adding spatial variable fidelity term, so as to better preserve fine scale features of image. Experimental results show that the proposed denoising method can achieve state-of-the-art subjective visual effect, and the signal-noise-ratio (SNR) is also objectively improved by 0.3–0.6 dB.
Funder
Science Research Program of Hubei Provincial Science & Technology Department of China
Subject
Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献