Kinematic Accuracy Method of Mechanisms Based on Tolerance Theories

Author:

Zhang Li12,Nie Hong12ORCID,Wei Xiaohui12ORCID

Affiliation:

1. Key Laboratory of Fundamental Science for National Defense Advanced Design Technology of Flight Vehicle, Nanjing University of Aeronautics and Astronautics, Nanjing 210001, China

2. State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210001, China

Abstract

Traditional tolerance analysis is mostly restricted to static analysis. However, tolerances of different components also affect the movement accuracy in a mechanism. In this paper, the idea of kinematic tolerance analysis is advanced. In the interest of achieving movement precision considering tolerance, a kinematic Jacobian model is established on the basis of a traditional dimensional chain and an original Jacobian model. The tolerances of functional element (FE) pairs are expressed as small-displacement screws. In addition, joint clearances resulting from tolerance design also influence the kinematic accuracy, and they are modeled by FE pairs. Two examples are presented to illustrate the rationality and the validity of the kinematic tolerance model. The results of the two examples are shown, and the discussion is presented. A physical model of the 2D example is also built up in 3DCS software. Based on the discussion, a comparison between the statistical and physical models is carried out, and the merits and demerits of both are listed.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tolerance analysis by static analogy on 2D assemblies with fits and fasteners;The International Journal of Advanced Manufacturing Technology;2023-05-15

2. Intelligent Analysis of Logistics Information Based on Network Dynamic Data;Journal of Control Science and Engineering;2022-07-30

3. Knowledge creation and application of optimal tolerance distribution method for aircraft product assembly;Aircraft Engineering and Aerospace Technology;2021-11-23

4. Uncertainty estimation in mechanical and electrical engineering;2021 International Conference on Electrotechnical Complexes and Systems (ICOECS);2021-11-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3