A New Type of ECG Signal Acquisition and Storage Nonvolatile Chip Embedded in Mobile Devices for Sports Monitoring

Author:

Zhang Dading12ORCID

Affiliation:

1. Department of Physical Education, Science and Technology College Gannan Normal University, Ganzhou, 341000 Jiangxi, China

2. Department of Leisure Sports, Jungwon University, Chungbuk 28024, Republic of Korea

Abstract

In the fast-paced development of life in today’s society, the use of ECG signals is not only used in the medical direction to scan patients; portable ECG signal acquisition tools can collect and analyze the corresponding ECG signals in time and respond to the wearer in time, so that the user can make timely adjustments or seek medical treatment in time to avoid a malignant situation that occurs. For people in sports, the collection of ECG signals is more helpful to the arrangement and estimation of training conditions. Based on nonvolatile memory technology, data will not be lost when the computer is turned off or suddenly or unexpectedly shut down. This research puts forward the design of an antiexercise ECG monitoring system that collects ECG signals for a group that is in the process of exercise. Use mathematical calculation system to classify, and conduct in-depth analysis of the reasons for poor anti-interference ability, and use the original denoising algorithm calculation as the basis to adapt to the dynamic situation in the opposite situation to the normal ECG signal acquisition in the static state. The collection is modified from the original basis. This research proposes an improved scheme for multichannel acquisition. Chips of semiconductor memory devices based on nonvolatile memory are embedded in mobile devices for use. The experimental results in this paper show that the comparison experiment ratio of collecting ECG signals from the sixth, third, fourth, and fifth directions can effectively reduce the mean square error (MSE), and the error of channel 6 is directly from 0.1598. It is down to 0.00143. Several other items showed a significant decrease. It shows that the anti-interference ability of the ECG monitoring system can be further enhanced by increasing the number of collection terminals.

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3