Affiliation:
1. College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing 210037, China
2. School of Transportation, Southeast University, Nanjing 211189, China
Abstract
Car-following models have been studied for a long time, and many traffic engineers and researchers have devoted attention to them. With the increase in machine learning, this paper proposes a fusion model based on the physics-informed deep learning framework. The purpose of this paper is to inherit the predecessors’ ideas, transform them to fit a new framework, and improve the framework’s accuracy. The IDM-D (intelligent driver model development) involves reenabling the effect of the following vehicle to form a complementary model (not car-following model) with the IDM (intelligent driver model). The pretreated NGSIM data are used for calibration and validation. The IDM and the IDM-D are combined with the LSTM under the framework of physics-informed deep learning, and the results are mixed in a ratio to form the final result. Using test data for simulation, the results reveal that the IDM-informed LSTM shows better performance than the LSTM and that the fusion model further improves the MSE (mean square error) of the IDM-informed LSTM. The fusion increases the accuracy during the deceleration process, which is better than just a single IDM-informed LSTM. The fusion model further explains drivers’ deceleration behaviors.
Funder
Major Project of Philosophy and Social Science Research in Colleges and Universities of Jiangsu Province
Subject
Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献