The Numerical Simulation of Heat and Mass Transfer on Geothermal System-A Case Study in Laoling Area, Shandong, China

Author:

Gao Cheng12ORCID,Zhang Le1ORCID,Sun Chuanxiang1ORCID,He Jiayuan1ORCID

Affiliation:

1. Petroleum Exploration and Production Research Institute, SINOPEC, Beijing 102206, China

2. Department of General Administration, SINOPEC, Beijing 100728, China

Abstract

Geothermal resources have become increasingly attractive and promising because of their abundant resource base and environmental protection, especially for hydrothermal resources, which are widely developed for heating in winter. It is indicated that numerical simulation is an important tool for high efficiency geothermal system development. Compared with other methods, numerical simulation is a more comprehensive, scientific, and effective method in the evaluation of recoverable resources and the formulation of development plans. However, there are some problems in the existing software, such as deviation in physical property calculation, incomplete multifields coupling, and poor applicability for low-permeability reservoir and large-scale models. Therefore, based on the optimized multiphysics coupling mathematical model and MPI architecture, a simulator for a multiphysics-coupling geothermal system (SMG) was developed by Sinopec. A case study in the Laoling area, Shandong, China was primarily conducted by using geothermal software SMG, where the effect of well spacing and injection fluid temperature on the production was illustrated. Moreover, a geothermal recoverable resources evaluation method based on numerical simulation is proposed and used for the evaluation of regional geothermal dynamic recoverable resources in Laoling.

Funder

National Basic Research Program of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3