Modeling Uncertainties for Automated and Connected Vehicles in Mixed Traffic

Author:

Sun YuchaoORCID,Cummins Liam,Ji Yan,Stemler Thomas,Pritchard Nicholas

Abstract

The advent of automated vehicles (AVs) and connected automated vehicles (CAVs) creates significant uncertainties in infrastructure planning due to many unknowns, such as performance variability and user adaptation. As technologies are still emerging with low market penetration, limited observational data hinder validation and escalate prediction uncertainty. This study addresses these gaps by employing diverse vehicle models and wide performance ranges in Aimsun microsimulations. It involved three AV/CAV car‐following models with the default Gipps human‐driven vehicle (HDV) model. We evaluated the performance of a mixed fleet in three well‐calibrated real‐world corridor models, including two highways and one freeway. Vehicle parameters in Aimsun are commonly drawn from a corresponding truncated normal distribution with fixed mean, min, and max values. However, to account for future uncertainty and heterogeneity, our AV/CAV models were given truncated normal distributions with variable means for important parameters to incorporate broader performance ranges. The variable means are drawn from intervals with uniform probability, and some of the interval extended below HDV values to account for scenarios where riders opt for smoother rides at the cost of traffic flow. Recognizing that precise future prediction is unattainable, we aimed to establish traffic performance boundaries that define best‐ and worst‐case scenarios in a mixed‐fleet environment. Enumerating all possible combinations is impractical, so a refined optimization algorithm was employed to expedite solution discovery. Our findings suggest that AVs/CAVs, even with conservative performance parameters, can improve traffic operations by reducing peak delays and enhancing travel time reliability. Freeways benefited more than arterial roads, especially with full CAV penetration, although the authors speculate this could create bottlenecks at off‐ramps. The added capacity may induce traffic demand that is difficult to estimate. Instead, we conducted a demand sensitivity analysis to gauge additional traffic accommodation without worsening delays. Compared to point predictions, establishing the range of possibilities can help us future‐proof infrastructure by considering uncertainties in the planning process. Our framework can be adopted to test alternative models or scenarios as more data becomes available.

Funder

University of Western Australia

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3