New Optimal Weight Combination Model for Forecasting Precipitation

Author:

Yang Song-shan1,Yang Xiao-hua2,Jiang Rong2,Zhang Yi-che1

Affiliation:

1. School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China

2. The Key Laboratory of Water and Sediment Sciences, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China

Abstract

In order to overcome the inaccuracy of the forecast of a single model, a new optimal weight combination model is established to increase accuracies in precipitation forecasting, in which three forecast submodels based on rank set pair analysis (R-SPA) model, radical basis function (RBF) model and autoregressive model (AR) and one weight optimization model based on improved real-code genetic algorithm (IRGA) are introduced. The new model for forecasting precipitation time series is tested using the annual precipitation data of Beijing, China, from 1978 to 2008. Results indicate the optimal weights were obtained by using genetic algorithm in the new optimal weight combination model. Compared with the results of R-SPA, RBF, and AR models, the new model can improve the forecast accuracy of precipitation in terms of the error sum of squares. The amount of improved precision is 22.6%, 47.4%, 40.6%, respectively. This new forecast method is an extension to the combination prediction method.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3