Affiliation:
1. School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China
2. The Key Laboratory of Water and Sediment Sciences, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
Abstract
In order to overcome the inaccuracy of the forecast of a single model, a new optimal weight combination model is established to increase accuracies in precipitation forecasting, in which three forecast submodels based on rank set pair analysis (R-SPA) model, radical basis function (RBF) model and autoregressive model (AR) and one weight optimization model based on improved real-code genetic algorithm (IRGA) are introduced. The new model for forecasting precipitation time series is tested using the annual precipitation data of Beijing, China, from 1978 to 2008. Results indicate the optimal weights were obtained by using genetic algorithm in the new optimal weight combination model. Compared with the results of R-SPA, RBF, and AR models, the new model can improve the forecast accuracy of precipitation in terms of the error sum of squares. The amount of improved precision is 22.6%, 47.4%, 40.6%, respectively. This new forecast method is an extension to the combination prediction method.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献