Affiliation:
1. Cognitive Neuroscience Unit, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada H3A 2B4
2. McConnell Brain Imaging Center, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada H3A 2B4
Abstract
Previous studies in nonhuman primates and cats have shown that the pulvinar receives input from various cortical and subcortical areas involved in vision. Although the contribution of the pulvinar to human vision remains to be established, anatomical tracer and electrophysiological animal studies on cortico-pulvinar circuits suggest an important role of this structure in visual spatial attention, visual integration, and higher-order visual processing. Because methodological constraints limit investigations of the human pulvinar's function, its role could, up to now, only be inferred from animal studies. In the present study, we used an innovative imaging technique, Diffusion Tensor Imaging (DTI) tractography, to determine cortical and subcortical connections of the human pulvinar. We were able to reconstruct pulvinar fiber tracts and compare variability across subjects in vivo. Here we demonstrate that the human pulvinar is interconnected with subcortical structures (superior colliculus, thalamus, and caudate nucleus) as well as with cortical regions (primary visual areas (area 17), secondary visual areas (area 18, 19), visual inferotemporal areas (area 20), posterior parietal association areas (area 7), frontal eye fields and prefrontal areas). These results are consistent with the connectivity reported in animal anatomical studies.
Funder
Fonds de Recherche du Québec - Santé
Subject
Radiology, Nuclear Medicine and imaging
Cited by
85 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献