A New Generating Function of (q-) Bernstein-Type Polynomials and Their Interpolation Function

Author:

Simsek Yilmaz1,Acikgoz Mehmet2

Affiliation:

1. Department of Mathematics, Faculty of Arts and Science, University of Akdeniz, 07058 Antalya, Turkey

2. Department of Mathematics, Faculty of Arts and Science, University of Gaziantep, 27310 Gaziantep, Turkey

Abstract

The main object of this paper is to construct a new generating function of the (q-) Bernstein-type polynomials. We establish elementary properties of this function. By using this generating function, we derive recurrence relation and derivative of the (q-) Bernstein-type polynomials. We also give relations between the (q-) Bernstein-type polynomials, Hermite polynomials, Bernoulli polynomials of higher order, and the second-kind Stirling numbers. By applying Mellin transformation to this generating function, we define interpolation of the (q-) Bernstein-type polynomials. Moreover, we give some applications and questions on approximations of (q-) Bernstein-type polynomials, moments of some distributions in Statistics.

Funder

Akdeniz University

Publisher

Hindawi Limited

Subject

Applied Mathematics,Analysis

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploring probabilistic Bernstein polynomials: identities and applications;Applied Mathematics in Science and Engineering;2024-09-05

2. Generating functions for polynomials derived from central moments involving bernstein basis functions and their applications;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2024-02-02

3. On the generating functions and special functions associated with superoscillations;Discrete Applied Mathematics;2023-12

4. Rate of convergence by Kantorovich type operators involving adjoint Bernoulli polynomials;Publications de l'Institut Math?matique (Belgrade);2023

5. A Generalization of Class of Humbert - Hermite Polynomials;The Journal of the Indian Mathematical Society;2022-08-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3