Affiliation:
1. College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2. Department of Engineering, Lancaster University, Lancaster LA1 4YW, UK
3. The Welding Institute, UK
Abstract
Digital twin (DT), aiming to characterise behaviors of physical entities by leveraging the virtual replica in real time, is an emerging technology and paradigm at the forefront of the Industry 4.0 revolution. The implementation of DT in predictive maintenance has facilitated its growth. As a major component of predictive maintenance, condition monitoring (CM) has great potential to combine with DT. To describe the state-of-the-art of DT-driven CM, this paper delivers a systematic review on the theoretical and practical development of DT in advancing CM. The evolution of concepts, main research areas, applied domains, and related key technologies are summarised. The driver of DT for CM is detailed in three aspects: data support, capability enhancement, and maintenance mode shift. The implementation process of DT-driven CM is introduced from the classification of DT modelling and the extension of monitoring algorithms. Finally, current challenges and opportunities for future research are discussed especially concerning the barriers and gaps in data management, high-fidelity modelling, behavior characterisation, framework standardisation, and uncertainty quantification.
Subject
Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献