Affiliation:
1. School of Electronics and Communication Engineering, Guangzhou University, Guangzhou 510006, China
2. School of Mechanical and Electric Engineering, Guangzhou University, Guangzhou 510006, China
Abstract
For the nonlinear discrete-time system, higher-order iterative learning control (HOILC) with optimal control gains based on evolutionary algorithm (EA) is developed in this paper. Since the updating actions are constituted by the tracking information from several previous iterations, the suitably designed HOILC schemes with appropriate control gains usually achieve fast convergence speed. To optimize the control gains in HOILC approach, EA is introduced. The encoding strategy, population initialization, and fitness function in EA are designed according to the HOILC characteristics. With the global optimization of EA, the optimal control gains of HOILC are selected adaptively so that the number of convergence iteration is reduced in ILC process. It is shown in simulation that the sum absolute error, total square error, and maximum absolute error of tracking in the proposed HOILC based on EA are convergent faster than those in conventional HOILC.
Funder
National Natural Science Foundation of China
Subject
Multidisciplinary,General Computer Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献