A High Performance Target Tracing Transmission Model Oriented to Lifecycle Maximization

Author:

Zhao Zhong-Nan1ORCID,Qiao Pei-Li1ORCID,Wang Jian1

Affiliation:

1. School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, Heilongjiang 150080, China

Abstract

For the high speed sensor networks applications such as Internet of Things, multimedia transmission, the realization of high-rate transmission under limited resources has become a problem to be solved. A high speed transmission and energy optimization model oriented to lifecycle maximization is proposed in this paper. Based on information-directed mechanism, the energy threshold set and the relay node distance selection will be done in the process of target tracing, as a result, retaining a balance between transmission rate and energy consumption. Meanwhile, multiagent coevolution is adopted to achieve the maximum of network lifecycle. Comparing with the relevant methods, indexes for network such as hops, throughput, and number of active nodes, standard deviation of remaining energy, and the network lifecycle are considered, and the simulated experiments show that the proposed method will promote the transmission rate effectively, prolong the network lifecycle, and improve network performance as a whole.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling and simulation of an open channel PEHF system for efficient PVDF energy harvesting;Mechanics of Advanced Materials and Structures;2019-04-11

2. Energy Harvesting from Aerodynamic Instabilities: Current prospect and Future Trends;IOP Conference Series: Materials Science and Engineering;2018-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3