One-Dimensional Nanostructured TiO2for Photocatalytic Degradation of Organic Pollutants in Wastewater

Author:

Feng Ting1,Feng Gen Sheng1,Yan Lei2,Pan Jia Hong3

Affiliation:

1. School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China

2. College of Materials, Optoelectronics and Physics, Xiangtan University, Xiangtan, Hunan 411105, China

3. Department of Materials Science and Engineering, NUSNNI-NanoCore, National University of Singapore, Singapore 117576

Abstract

The present paper reviews the progress in the synthesis of one-dimensional (1D) TiO2nanostructures and their environmental applications in the removal of organic pollutants. According to the shape, 1D TiO2nanostructures can be divided into nanorods, nanotubes, nanowires/nanofibers, and nanobelts. Each of them can be synthesized via different technologies, such as sol-gel template method, chemical vapor deposition, and hydrothermal method. These methods are discussed in this paper, and the recent development of the synthesis technologies is also presented. Furthermore, the organic pollutants, degradation using the synthesized 1D TiO2nanostructures is studied as an important application of photocatalytic oxidation (PCO). The 1D nanostructured TiO2exhibited excellent photocatalytic activity in a PCO process, and the mechanism of photocatalytic degradation of organic pollutants is also discussed. Moreover, the modification of 1D TiO2nanostructures using metal ions, metal oxide, or inorganic element can further enhance the photocatalytic activity of the photocatalyst. This phenomenon can be explained by the suppression of e-h+pairs recombination rate, increased specific surface area, and reduction of band gap. In addition, 1D nanostructured TiO2can be further constructed as a film or membrane, which may extend its practical applications.

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3