Quasi-One-Dimensional Model of Hydrocarbon-Fueled Scramjet Combustor Coupled with Regenerative Cooling

Author:

Xiong Yuefei1,Qin Jiang1ORCID,Cheng Kunlin1,Zhang Silong1,Feng Yu2

Affiliation:

1. School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China

2. Department of Mechanical Engineering and Automation, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China

Abstract

In order to rapidly predict the performance of hydrocarbon-fueled regeneratively cooled scramjet engine in system design, a quasi-one-dimensional model has been developed. The model consists of a supersonic combustor model with finite-rate chemistry and a cooling channel model with real gas working medium, which are governed by two sets of ordinary differential equations separately. Additional models for wall friction, heat transfer, sonic fuel injection, and mixing efficiency are also included. The two sets of ordinary differential equations are coupled and iteratively solved. The SUNDIALS code is used since the equations for supersonic combustion flow are stiff mathematically. The cooling channel model was verified by electric heating tube tests, and the supersonic combustor model was verified by experimental results for both hydrogen and hydrocarbon-fueled scramjet combustors. Three cases were comparatively studied: (1) scramjet combustor with an isothermal wall, (2) scramjet combustor with an adiabatic wall, and (3) scramjet combustor with regenerative cooling. Results showed that the model could predict the axial distributions of flow parameters in the supersonic combustor and cooling channel. Differences on ignition delay time and combustion efficiency for the three cases were observed.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3