Recent Developments of Flexible CdTe Solar Cells on Metallic Substrates: Issues and Prospects

Author:

Aliyu M. M.1,Islam M. A.1,Hamzah N. R.1,Karim M. R.2ORCID,Matin M. A.1,Sopian K.3ORCID,Amin N.123ORCID

Affiliation:

1. Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), Selangor, 43600 Bangi, Malaysia

2. Center of Excellence for Research in Engineering Materials (CEREM), College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia

3. Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia (UKM), Selangor, 43600 Bangi, Malaysia

Abstract

This study investigates the key issues in the fabrication of CdTe solar cells on metallic substrates, their trends, and characteristics as well as effects on solar cell performance. Previous research works are reviewed while the successes, potentials, and problems of such technology are highlighted. Flexible solar cells offer several advantages in terms of production, cost, and application over glass-based types. Of all the metals studied as substrates for CdTe solar cells, molybdenum appears the most favorable candidate, while close spaced sublimation (CSS), electrodeposition (ED), magnetic sputtering (MS), and high vacuum thermal evaporation (HVE) have been found to be most common deposition technologies used for CdTe on metal foils. The advantages of these techniques include large grain size (CSS), ease of constituent control (ED), high material incorporation (MS), and low temperature process (MS, HVE, ED). These invert-structured thin film CdTe solar cells, like their superstrate counterparts, suffer from problems of poor ohmic contact at the back electrode. Thus similar strategies are applied to minimize this problem. Despite the challenges faced by flexible structures, efficiencies of up to 13.8% and 7.8% have been achieved in superstrate and substrate cell, respectively. Based on these analyses, new strategies have been proposed for obtaining cheaper, more efficient, and viable flexible CdTe solar cells of the future.

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3