Affiliation:
1. Department of Physical Education, Xi’an International Studies University, Xi’an 710128, Shaanxi, China
Abstract
With the comprehensive development of national fitness, men, women, young, and old in China have joined the ranks of fitness. In order to increase the understanding of human movement, many researches have designed a lot of software or hardware to realize the analysis of human movement state. However, the recognition efficiency of various systems or platforms is not high, and the reduction ability is poor, so the recognition information processing system based on LSTM recurrent neural network under deep learning is proposed to collect and recognize human motion data. The system realizes the collection, processing, recognition, storage, and display of human motion data by constructing a three-layer human motion recognition information processing system and introduces LSTM recurrent neural network to optimize the recognition efficiency of the system, simplify the recognition process, and reduce the data missing rate caused by dimension reduction. Finally, we use the known dataset to train the model and analyze the performance and application effect of the system through the actual motion state. The final results show that the performance of LSTM recurrent neural network is better than the traditional algorithm, the accuracy can reach 0.980, and the confusion matrix results show that the recognition of human motion by the system can reach 85 points to the greatest extent. The test shows that the system can recognize and process the human movement data well, which has great application significance for future physical education and daily physical exercise.
Funder
Xi'an International Studies University
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献