Role of TLR5 in the Translocation and Dissemination of Commensal Bacteria in the Intestine after Traumatic Hemorrhagic Shock

Author:

Zhang Yun123,Zhang Jian123,Xu Tao123,Zhang Cheng123,Yu Wen-Qiao4,Wei Tao123,Zhang Bo5,Chen Qi123,Qiu Jun-Yu123,Li Hai-Jun5ORCID,Liang Ting-Bo123ORCID

Affiliation:

1. Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China

2. Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China

3. Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China

4. Department of Surgical Intensive Care Unit, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China

5. Department of General Surgery, Shenzhen Luohu People’s Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China

Abstract

Enterogenous infection is a major cause of death during traumatic hemorrhagic shock (THS). It has been reported that Toll-like receptor 5 (TLR5) plays an integral role in regulating mucosal immunity and intestinal homeostasis of the microbiota. However, the roles played by TLR5 on intestinal barrier maintenance and commensal bacterial translocation post-THS are poorly understood. In this research, we established THS models in wild-type (WT) and Tlr5−/− (genetically deficient in TLR5 expression) mice. We found that THS promoted bacterial translocation, while TLR5 deficiency played a protective role in preventing commensal bacteria dissemination after THS. Furthermore, intestinal microbiota analysis uncovered that TLR5 deficiency enhanced the mucosal biological barrier by decreasing RegIIIγ-mediated bactericidal activity against G+ anaerobic bacteria. We then sorted small intestinal TLR5+ lamina propria dendritic cells (LPDCs) and analyzed TH1 differentiation in the intestinal lamina propria and a coculture system consisting of LPDCs and naïve T cells. Although TLR5 deficiency attenuated the regulation of TH1 polarization by LPDCs, it conferred stability to the cells during THS. Moreover, retinoic acid (RA) released from TLR5+ LPDCs could play a key role in modulating TH1 polarization. We also found that gavage administration of RA alleviated bacterial translocation in THS-treated WT mice. In summary, we documented that TLR5 signaling plays a pivotal role in regulating RegIIIγ-induced killing of G+ anaerobic bacteria, and LPDCs mediated TH1 differentiation via RA. These processes prevent intestinal bacterial translocation and enterogenous infection after THS, suggesting that therapeutically targeting LPDCs or gut microbiota can interfere with bacterial translocation after THS.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Immunology,General Medicine,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3