Innovative Methodology for Sulfur Release from Copper Tailings by the Oxidation Roasting Process

Author:

Luo Bing123,Peng Tongjiang124ORCID,Sun Hongjuan12ORCID

Affiliation:

1. Key Laboratory of Ministry of Education for Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China

2. Institute of Mineral Materials and Applications, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China

3. City College, Southwest University of Science and Technology, Mianyang, Sichuan 621000, China

4. Center of Forecasting and Analysis, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China

Abstract

To effectively prevent the accumulation of copper tailings from producing acid mine drainage (AMD) and maximize the comprehensive utilization of copper tailings, the process of oxidation roasting was adopted to release sulfur in the form of SO2 to achieve the purpose of sulfur recovery later. Based on the AMD risk assessment, thermogravimetric (TG) analysis, and differential scanning calorimeter (DSC) analysis, the influences of roasting temperature, residence time, and air flow in the roasting process were investigated. The thermal stability, reaction equilibrium, mineral transformation, and residual S content were characterized by TG-DSC, HSC chemical software 6.0, X-ray diffraction (XRD), and combustion neutralization, respectively. The optimum conditions for sulfur release in the roasting process were shown with a temperature of 1200°C, a residence time of 60 min, and an air flow of 0.8 L/min. Under these conditions, the sulfur release rate was 99.82%, and the residual S content was 0.05%. Subsequently, the process of sulfur release was proposed as four steps: oxidative decomposition of pyrrhotite, formation of ferric sulfate, decomposition of ferric sulfate, and formation of hematite. All of the findings could propose a theoretical and experimental reference for the recovery of the sulfur component from tailings rich in sulfide minerals.

Funder

Longshan Academic Research Support Program

Publisher

Hindawi Limited

Subject

General Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3