Image Denoising Using Nonlocal Means with Shape-Adaptive Patches and New Weights

Author:

Zuo Chenglin1ORCID,Ma Jun1ORCID,Xiong Hao1,Ran Lin1

Affiliation:

1. Low Speed Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Abstract

Digital images captured from CMOS/CCD image sensors are prone to noise due to inherent electronic fluctuations and low photon count. To efficiently reduce the noise in the image, a novel image denoising strategy is proposed, which exploits both nonlocal self-similarity and local shape adaptation. With wavelet thresholding, the residual image in method noise, derived from the initial estimate using nonlocal means (NLM), is exploited further. By incorporating the role of both the initial estimate and the residual image, spatially adaptive patch shapes are defined, and new weights are calculated, which thus results in better denoising performance for NLM. Experimental results demonstrate that our proposed method significantly outperforms original NLM and achieves competitive denoising performance compared with state-of-the-art denoising methods.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3