Affiliation:
1. Low Speed Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China
Abstract
Digital images captured from CMOS/CCD image sensors are prone to noise due to inherent electronic fluctuations and low photon count. To efficiently reduce the noise in the image, a novel image denoising strategy is proposed, which exploits both nonlocal self-similarity and local shape adaptation. With wavelet thresholding, the residual image in method noise, derived from the initial estimate using nonlocal means (NLM), is exploited further. By incorporating the role of both the initial estimate and the residual image, spatially adaptive patch shapes are defined, and new weights are calculated, which thus results in better denoising performance for NLM. Experimental results demonstrate that our proposed method significantly outperforms original NLM and achieves competitive denoising performance compared with state-of-the-art denoising methods.
Funder
National Natural Science Foundation of China
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献