Snail Shells Adsorbent for Copper Removal from Aqueous Solutions and the Production of Valuable Compounds

Author:

Ouafi Redouane1ORCID,Asri Meryem2,Omor Anass1,Taleb Mustapha1,Rais Zakia1

Affiliation:

1. Engineering Laboratory of Organometallic Molecular Materials and Environment, Faculty of Science Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco

2. Microbial Biotechnology and Bioactive Molecules Laboratory, Faculty of Sciences and Techniques, Sidi Mohammed Ben Abdellah University, Fez, Morocco

Abstract

This research explored the efficiency of snail shells powder (SSP) for Cu(II) removal from aqueous solutions and the production of valuable compounds from the residual product. To confirm its chemical and mineral components, the material was characterized by different instrumental techniques. The effects of experimental parameters such as the pH of the solution, the effect of SSP dose, particle size, and initial concentration of Cu(II) on the removal process were studied. The removal of Cu(II) was reasonably fast to be completed within a time frame of 90 min. The kinetics following the pseudo-second-order model (R2 = 0.979) were better compared to the pseudo-first-order model (R2 = 0.896). The increase in pH values leads to an increase in the amount of Cu(II) adsorbed. Afterward, the adsorption capacity reaches stability at pH near 7. The maximum Cu(II) removal occurred with a mass of 8 g·L−1 and a particle size of 300 μm. This particle size presents approximately 44.5% of SSP particles, which is the largest proportion of the sample as shown by particle size analysis. The adsorption isotherm was well described by Langmuir and Freundlich equations. The thermodynamic parameters values showed that the Cu(II) adsorption was a spontaneous and exothermic process. Furthermore, with the presence of CaCO3, the precipitation of Cu(II) in the form of posnjakite occurred with a high Cu(II) removal rate close to 99%. The residual SSP was used for the production of valuable compounds through the thermal decomposition process at various temperatures.

Publisher

Hindawi Limited

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3