Impact of Personalized Recommendation on Today’s News Communication through Algorithmic Mechanism in the New Media Era

Author:

Liu Xin1ORCID

Affiliation:

1. Anshan Municipal Committee Party School of CPC, Anshan City, Liaoning Province 114000, China

Abstract

In recent years, the continuous innovation of technology has greatly contributed to the great changes in the media industry. The rapid development of big data and artificial intelligence technologies has enabled people to transition from the era of new media to the era of intelligent media. While the automation of news production brings broad prospects for intelligent media, it also accelerates the challenge of information explosion. Facing the massive amount of news and information, how to get the information users want quickly has become a big problem. In order to solve the audience’s information anxiety, personalized news recommendation system is born. In fact, news gate-keeping is an important part of news distribution. In the era of smart media, algorithmic distribution has impacted the original distribution mode and brought challenges to news gate-keeping. Personalized news recommendation is one of the gate-keeping methods of intelligent media. At the same time, with the rapid development of the Internet and information technology, today’s society has entered a period of information explosion. In terms of news, the rapid development of the Internet has made it easier to publish and read news on the Internet. As a result, online news has become an important way for people to get information. However, the previous news websites had a large amount of news information, but only collected and consolidated the news. As a result, users were left to passively receive news information from news sites and find the content they needed. Consequently, although the Internet has a huge amount of complicated news information, it is unable to meet the diversified and personalized news needs of users. In order to solve this issue, researchers are constantly looking for solutions. The emergence of recommendation system is an effective measure to cope with the above problem. The mainstream models of recommendation systems are collaborative filtering model and content-based recommendation model. However, there are two essential problems with collaborative filtering. The first one is the cold start problem, and the second one is that the preference matrix of item users becomes sparse as the number of items and users grows. These two issues can seriously affect the recommendation accuracy of the recommendation system. As a result, a hybrid recommendation system is built by fusing common recommendation algorithms. This system can not only deliver personalized information to different users, but also compensate the shortcomings of a single algorithm to a certain extent. To be specific, the newly constructed hybrid recommendation system can push news of interest to users according to their demographic attributes, behavioral attributes, and interests, thus expanding the scope of news communication.

Funder

Anshan Municipal Committee Party School of CPC

Publisher

Hindawi Limited

Subject

General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3