Affiliation:
1. Department of Foreign Language and Tourism, Hebei Petroleum University of Technology, Chengde 067000, Hebei, China
2. Department of Management Engineering, Hebei Petroleum University of Technology, Chengde 067000, Hebei, China
Abstract
The environmental effect of the meetings, incentives, conventions, and exhibitions (MICE) industry is as extensive as its economic impact. Visitors attending events use a wide range of service providers, including airline car rental firms, restaurants, hotels, theaters, and tour operators. Traditionally used tourism demand forecasting approaches rely heavily on univariate time series and multivariate regression models. Although these function-based prediction systems have demonstrated some effectiveness in forecasting tourism, they are unable to accurately capture the link between tourist demand and supply as a feed-forward neural network does (FFNN). Research has shown that an FFNN can outperform regression and time-series algorithms when it comes to forecasting tourism data. This research, for the first time, expands the use of neural networks in tourist demand creation by combining a hybrid FFNN and chimp optimization learning algorithm (i.e., FFNN-ChOA) into a nonlinear tourism demand dataset. In terms of predicting accuracy, FFNN-ChOA surpasses traditional backpropagation neural networks, regression models, and time-series models.
Subject
Computer Networks and Communications,Computer Science Applications
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献