Structural Damage Detection Using Mutual Information and Improved Reptile Search Algorithm for Fused Smooth Signals Affected by Coloured Noise

Author:

Hassani SaharORCID

Abstract

Structural health monitoring (SHM) faces a significant challenge in accurately detecting damage due to noise in acquired signals in composite plates, which can adversely affect reliability. Specific noise reduction techniques tailored to SHM signals are developed to tackle this issue. Gaussian smoothing proves effective in reducing noise and enhancing signal features, thereby facilitating the identification of damage‐related information. Optimization algorithms play a crucial role in damage detection, especially when integrated with smoothing and fusion techniques, as they provide optimal solutions to SHM challenges. A model‐updating‐based optimization algorithm is proposed for detecting damage in structures using condensed frequency response functions (CFRFs), even in the presence of various types of noise and measurement errors. The CFRF signals are first smoothed using an optimized Gaussian smoothing technique as part of the proposed method. Then, the proposed methodology integrates diverse smoothed signals using a raw data fusion approach, including those from different excitations, frequency ranges, and sensor placements. Fused smoothed signals are then fed into a new objective function, incorporating mutual information (MI) and Gaussian smoothing to mitigate correlated coloured noise. The proposed objective function also introduces a hyperparameter tuning of Gaussian smoothing to enhance its performance. Optimization via the improved reptile search algorithm (IRSA) updates the objective function, optimizing damage and smoothing parameters. The hybrid method detects damage in numerical composite laminated plates with different layers and boundary conditions, demonstrating its effectiveness as an SHM technique. Comparative evaluations of other state‐of‐the‐art methods show that the proposed method outperforms its counterparts, making it a promising damage detection approach to address the noise challenge in the SHM field.

Funder

University of New South Wales

Publisher

Wiley

Reference71 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3