C-Arm Image-Based Surgical Path Planning Method for Distal Locking of Intramedullary Nails

Author:

Hsu Wei-En1ORCID,Yu Ching-Hsiao2ORCID,Chang Chih-Ju34,Wu Hung-Kang2,Yu Tsong-Han2,Tseng Ching-Shiow1ORCID

Affiliation:

1. Department of Mechanical Engineering, National Central University, Taoyuan 32001, Taiwan

2. Department of Orthopedics, Taoyuan General Hospital, Taoyuan 33004, Taiwan

3. Department of Neurosurgery, Cathay General Hospital, Taipei, Taiwan

4. Department of Medicine, School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan

Abstract

Due to the curvature of the bone marrow cavity, the intramedullary nail used in long bone fracture fixation can be deformed, causing displacement of the locking holes. In this study, an algorithm using only one C-arm image to determine the center positions and axial directions of locking holes was developed for drilling guidance. Based on conventional method that the axial direction of locking hole would be identified when locking hole contour is presented as a circle, the proposed method can locate the circle contour centroid by using one C-arm image including two elliptical contours. Then the two distal locking holes’ axial direction and centers would be determined. Three experiments were conducted to verify the performance of the proposed algorithm, which are (1) computer simulation, (2) use of real intramedullary nails, and (3) actual drilling test with the bone model. The experimental results showed that the average error of the axial direction and center position were 0.62 ± 0.6°, 0.73 ± 0.53 mm (simulation) and 3.16 ± 1.36°, 1.10 ± 0.50 mm (actual nail), respectively. The last ten drilling test sets were completed successfully (with an average duration of 48 seconds). Based on the experimental results, the proposed algorithm was feasible for clinic applications.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Hindawi Limited

Subject

Biomedical Engineering,Bioengineering,Medicine (miscellaneous),Biotechnology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3