Affiliation:
1. School of Mechanical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
2. School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, China
Abstract
Herein, to improve the dynamic performance of continuum structures, their fundamental frequency is optimized using the topology optimization method. This helps to obtain the best material distribution in the design space and increases the fundamental frequency of the structure higher than the disturbance frequency. Using the variable density method, the dynamic topology optimization model of a long-span continuum structure is built based on the density interpolation model of a solid isotropic material with penalization (SIMP). The goal of this optimization is to maximize the first-order eigenvalue, and the optimization constraint is that the total volume of the structure is smaller than the given value. To improve the efficiency and accuracy of the model, sensitivity filtering is adopted to avoid numerical instability during calculation. Moreover, the optimization criterion method is used to iteratively solve the optimization results. Finally, the structural topology optimization method is implemented on the long-span single beam of a bridge crane at a construction site. The results show that the natural frequency of the structure is increased and the modal characteristics are improved, which lays the foundation for further optimization and dynamic-response analysis.
Funder
National Science and Technology Pillar Program
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献