Affiliation:
1. Key Laboratory of Gas and Fire Control for Coal Mines, School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
Abstract
The unsteady flows of a generalized fractional Burgers’ fluid between two side walls perpendicular to a plate are studied for the case of Rayleigh-Stokes’ first and second problems. Exact solutions of the velocity fields are derived in terms of the generalized Mittag-Leffler function by using the double Fourier transform and discrete Laplace transform of sequential fractional derivatives. The solution for Rayleigh-Stokes’ first problem is represented as the sum of the Newtonian solutions and the non-Newtonian contributions, based on which the solution for Rayleigh-Stokes’ second problem is constructed by the Duhamel’s principle. The solutions for generalized second-grade fluid, generalized Maxwell fluid, and generalized Oldroyd-B fluid performing the same motions appear as limiting cases of the present solutions. Furthermore, the influences of fractional parameters and material parameters on the unsteady flows are discussed by graphical illustrations.
Funder
Fundamental Research Funds for the Central Universities
Subject
Applied Mathematics,General Physics and Astronomy
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献