Power Aware Mobility Management of M2M for IoT Communications

Author:

Ahmad Awais1,Paul Anand1,Rathore M. Mazhar1,Rho Seungmin2

Affiliation:

1. School of Computer Science and Engineering, Kyungpook National University, Daegu 702-701, Republic of Korea

2. Department of Multimedia, Sungkyul University, Anyang 431-003, Republic of Korea

Abstract

Machine-to-Machine (M2M) communications framework is evolving to sustain faster networks with the potential to connect millions of devices in the following years. M2M is one of the essential competences for implementing Internet of Things (IoT). Therefore, various organizations are now focusing on enhancing improvements into their standards to support M2M communications. Thus, Heterogeneous Mobile Ad Hoc Network (HetMANET) can normally be considered appropriate for M2M challenges. These challenges incorporated when a mobile node (MN) selects a target network in an energy efficient scanning for efficient handover. Therefore, to cope with these constraints, we proposed a vertical handover scheme for handover triggering and selection of an appropriate network. The proposed scheme is composed of two phases. Firstly, the MNs perform handover triggering based on the optimization of the Receive Signal Strength (RSS) from an access point/base station (AP/BS). Secondly, the network selection process is performed by considering the cost and energy consumption of a particular application during handover. Moreover, if there are more networks available, then the MN selects the one provided with the highest quality of service (QoS). The decision regarding the selection of available networks is made on three metrics, that is, cost, energy, and data rate. Furthermore, the selection of an AP/BS of the selected network is made on five parameters: delay, jitter, Bit Error Rate (BER), communication cost, and response time. The numerical and experimental results are compared in the context of energy consumption by an MN, traffic management on an AP/BS, and QoS of the available networks. The proposed scheme efficiently optimizes the handoff related parameters, and it shows significant improvement in the existing models used for similar purpose.

Funder

Kyungpook National University

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3