A Comprehensive Sensitivity Analysis of a Data Center Network with Server Virtualization for Business Continuity

Author:

Nguyen Tuan Anh12ORCID,Min Dugki1,Park Jong Sou2

Affiliation:

1. Department of Computer, Information & Communications Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea

2. Department of Computer Engineering, Korea Aerospace University, 76 Hanggongdaehang-ro, Deogyang-gu, Goyang-si, Gyeonggi-do 412-791, Republic of Korea

Abstract

Sensitivity assessment of availability for data center networks (DCNs) is of paramount importance in design and management of cloud computing based businesses. Previous work has presented a performance modeling and analysis of a fat-tree based DCN using queuing theory. In this paper, we present a comprehensive availability modeling and sensitivity analysis of a DCell-based DCN with server virtualization for business continuity using stochastic reward nets (SRN). We use SRN in modeling to capture complex behaviors and dependencies of the system in detail. The models take into account (i) two DCell configurations, respectively, composed of two and three physical hosts in a DCell0unit, (ii) failure modes and corresponding recovery behaviors of hosts, switches, and VMs, and VM live migration mechanism within and between DCell0s, and (iii) dependencies between subsystems (e.g., between a host and VMs and between switches and VMs in the same DCell0). The constructed SRN models are analyzed in detail with regard to various metrics of interest to investigate system’s characteristics. A comprehensive sensitivity analysis of system availability is carried out in consideration of the major impacting parameters in order to observe the system’s complicated behaviors and find the bottlenecks of system availability. The analysis results show the availability improvement, capability of fault tolerance, and business continuity of the DCNs complying with DCell network topology. This study provides a basis of designing and management of DCNs for business continuity.

Funder

Ministry of Science, ICT and Future Planning

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3